
Smart Contracts Vulnerability Auditing With
Multi-Semantics

Zhen Yang
Department of Computer Science

City University of Hong Kong
Hong Kong, China

zhyang8-c@my.cityu.edu.hk

Jacky Keung
Department of Computer Science

City University of Hong Kong
Hong Kong, China

Jacky.Keung@cityu.edu.hk

Miao Zhang
Department of Computer Science

City University of Hong Kong
Hong Kong, China

miazhang9-c@my.cityu.edu.hk

Yan Xiao
School of Computing

National University of Singapore
Singapore, Singapore
dcsxan@nus.edu.sg

Yangyang Huang
Department of Computer Science

City University of Hong Kong
Hong Kong, China

yhuan5@cityu.edu.hk

Tik Hui
Department of Computer Science

City University of Hong Kong
Hong Kong, China

tikhui@cityu.edu.hk

Abstract—Smart contracts vulnerability auditing is vitally
critical to ensure transaction execution in normal on blockchain.
The current data-driven approaches normally tokenize smart
contracts into a series of sequences according to only one
tokenization standard for vulnerability detection purpose,
resulting some of the semantic contexts could not be reflected
within restricted sequence length.

To address this limitation, we generate sequences from smart
contracts in three tokenization standards for which we utilize n-
gram language model to capture semantic contexts respectively,
and finally exploiting our effective combination strategy of
Intersection or Union to integrate the audited results from
multiple semantic contexts. In order to evaluate the proposed
approach, we applied it on over 7200 Ethereum smart contract
samples. Experimental result shows our proposed method is
capable of detecting vulnerabilities and competitive with the
baseline in test sets, with improved precision of over 44% when
Intersection is applied in their results, as well as improved Recall
measure up by over 300% and F-measure up by 220% when Union
is applied. Our proposed method for smart contract vulnerability
detection, an important tool for developing quality decentralized
software applications, is able to analyze multiple semantic contexts
and successfully detects more true vulnerabilities with high
precision, outperforming that of the baseline approaches.

Keywords—Software Engineering, Smart Contract, Ethereum,
N-gram Language Model, Vulnerability Auditing

I. INTRODUCTION

Smart contracts, as the backend logics of decentralized
applications (DApp), are a series of automatically executed
programs written by a Turing-complete programming language
such as solidity, first applied by Ethereum in around 2013 [1].
They operate on top of the consensus protocol of the blockchain
network for the purpose of ensuring the trading to complete
between different parties without trust, by which people could
remove the traditional central entities those managing the
transaction network and operate their businesses directly peer-
to-peer, thereby to simplify the transaction procedure. As one of
the most popular blockchain platform, Ethereum has been

growing to a huge volume: The total Ether supply and market
capitalization on Ethereum have been up to 100 Million Ether
and 18 Billion USD respectively. Nevertheless, due to the
unfamiliarity with the smart contract development and its
peculiar operation mechanism, a great amount of potential risks
appeared in those DApps operating on the Ethereum such as the
infamous DAO attack in 2016 leading 60 million USD loss [2-
5]. As such, vulnerability auditing on smart contracts has been
becoming a vitally critical research area. Current data-driven
approaches such as the latest literature of S-gram [6], utilize N-
gram Language Model (NLM) to analyze token sequences
generated based on smart contract Abstract Syntax Tree (AST).
Nevertheless, like most literatures using NLM in code defect
prediction, the S-gram only adopted one kind of tokenization
standard in sequences generation, leading to the ignorance of
some semantic contexts within a restricted sequence length.

In this paper, we propose an improved model, namely Multi-
Semantic gram (MSgram), based on the S-gram to further boost
its performance by analyzing sequences of multiple semantics.
Basically, for each smart contract, we generate sequences in
three ways for the multi-semantic purpose: 1) Text sequence
covering only text information, i.e. only focus on leaf nodes in
AST when tokenization 2) Structure sequences covering only
structure information, i.e. only focus on non-leaf nodes in AST
when tokenization 3) Combined sequences covering both
structure and text information of a smart contract, i.e. a
completely AST representation. For the part of constructing the
sequences of structure, text and combined version, we modified
the SBT Traversal proposed by Hu et al. [7] to make it more
general in sequence extraction and fused the characteristic of
type-based tokenization of S-gram, thereby to make the
tokenizer focus mainly on Ethereum smart contracts.

Since each kind of sequence represent a kind of semantic, for
their different tokens combinations and permutations, thus the
analysis on different kind of sequence will capture different
information. As such, we feed each kind of sequence into their
corresponding trained NLMs respectively to capture their
individual semantic and thereby to obtain separate audited
results. For each smart contract, we can get three audited results

892

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.0-153

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

from above analysis of three kinds of sequences. After that, we
adopt a combination strategy of Intersection or Union on these
three separate audited results to integrate a multi-semantic
analyzed audited result, i.e. the final audited result for assisting
avoiding vulnerabilities during the development of the smart
contracts.

We evaluate our proposed approach on 7200 Ethereum smart
contracts gathered from Etherscan.io [8] with division into train
set and test set. Furthermore, the whole evaluation process is
based on two phases of model construction and security
auditing. In model construction phase, we optimize separate
NLMs and assess combination strategies to obtain the best
setting of MSgram based on train set. Then in the auditing
security phase, we build the MSgram with the pre-configured
setting in the construction phase to make a comparison with the
baseline based on the test set.

The result shows final audited results with high precision up
to 51.79% (averagely 48.02%) in test set when we made an
Intersection combination. While with a Union combination
adopted to capture more true vulnerabilities, we obtain another
final audited result with recall up to 66.02% (averagely 58.57%)
and F-measure up to 0.4211 (averagely 0.3406) in test set.
Compared with the performance of the baseline i.e. original S-
gram model in test set, the final audited result with Intersection
strategy can improve the precision by up to 106.59% (averagely
44.24%). For the auditing result with Union strategy, it can
improve the recall by 360.55% at most (averagely 306.50%) and
the F-measure by 271.02% at most (averagely 224.22%).

In summary, the contributions of this paper include the
following three-fold:

(1) We propose a novel concept of integrating multiple
semantics in smart contract vulnerability auditing with N-gram
Language Model.

(2) We put forward three tokenization standards by
modifying the SBT Traversal and generate three kinds of
sequences based on structure only, text only and combined
version in order to capture multi-semantics.

(3) We explore the combination strategies (Intersection
and Union strategies) of multi-semantics and empirically study
the performance and their pros and cons.

II. BACKGROUND

A. Ethereum Smart Contracts and Vulnerabilities
Ethereum Smart contracts consist of a series of state

variables and functions which can be invoked by Ethereum
externally own accounts for transaction operations. Most of
those state variables store digital assets or currency possessed by
users and those functions manage the trading processes or
regulations predefined by the contract deployer. Due to the
unfamiliarity with the smart contract development and its
peculiar operation mechanism, a lot of security risks in capital
management and trading continuously come out.

For instance, the reentrancy risk leading the DAO attack in
2016 is caused by a malicious attacker try a recursive manner to
invoke a profitable function of the targeting contract repeatedly
via his attack contract. Other instances like timestamp
dependency risk: Some of the critical operations depending on
timestamp could have risk of getting attacked by malicious
attackers who change the block’s timestamp illegally to make
profits. Vulnerabilities in smart contract as mentioned above

won’t crash the code execution but can destroy the normal
transaction logics predefined by contract deployers, thereby
causes huge losses [3, 9, 10].

B. N-gram Language Model
In this paper, we adopt the N-gram Language Model (NLM)

to analyze those token sequences generated from smart
contracts. The core methodology of the NLM is derived from
Markov chain which is essentially a Bayesian conditional
probability model. It uses the continuous former n words to
estimate the probability of the current word ti ,
i.e. P(ti|ti-(n-1),…ti-1) as shown in Equation (1). Thus, given a
sentence, e.g. S=t1t2t3t4…tk , its probability is shown in
Equation (2).

P൫tiหti-(n-1),…ti-1൯=
count൫ti-(n-1),…ti-1,ti൯
count൫ti-(n-1),…ti-1൯ (1)

P(S)= ෑ P൫tiหti-(n-1),…ti-1൯k

i=1

(2)
After we train the model (i.e. we calculate each word’s

probability of n-gram in the whole corpus), similarly with S-
gram, we also adopt the log-transformed perplexity metric to
measure whether a token sequence is a potential vulnerability
or not, because the form of addition can speed up the calculation
while avoiding the floating-point number overflows downward
caused by the too small probability after product. In the field of
natural language process, a sentence with a higher perplexity
score means its word sequence is scarcer, in other words, it
tends to be an abnormal or incorrect sentence. Since vulnerable
sequences occupy only a little part in the whole dataset, if a
token sequence is scarce, it has a great chance to be a vulnerable
sequence. Therefore, for those sequences with high perplexity
scores, we put them into candidate vulnerability list. The
perplexity log-transformed score for a whole sentence S with
the length of K is represented by H(S) like below:

H(S)= -
1
K

෍ log P(ti|ti-(n-1)…ti-1)
K

i=1

(3)
III. METHODOLOGY

A. Model Framework Overview
The framework of the proposed MSgram includes two

phases, i.e. the model construction phase and security auditing
phase, respectively. Figure 1 shows the overview of MSgram
framework.

In the model construction phase, the first step is
Tokenization. We propose three tokenization standards and
adopt our tokenizer to extract each smart contract source code
in the train set into three sequence collections of Combined
Sequence, Text Sequence and Structure Sequence respectively.
The next step is model training and optimization. We feed
each collection into the NLM tool kenlm [17] to train their
models and optimize them by different parameters and
thresholds. Then we select those optimized NLMs based on the
precision of their separate audited result, we named the
optimized NLM as Detector. The final step is designing and
assessing combination strategies. We provide two kinds of

893

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

combination strategies, i.e. Intersection and Union to improve
the performance of those single Detectors and thereby generate
a final audited result. The verified best parameter and threshold
combination for each single Detector, as well as the effective
combination strategy will be applied in the security auditing
phase.

For the phase of security auditing, when an auditing target
smart contract comes, MSgram firstly enable the tokenizer to
extract it into three kinds of sequence collections then analyze
token sequences by their corresponding Detectors respectively
to output the separate audited results and finally automatically
follow the combination strategy predefined in the construction
stage to get the final audited results.

Fig. 1. The Framework Overview of MSgram

B. Tokenization
In this paper, we modify SBT Traversal to be more

generalized in sequence extraction. We also add characteristics
of the tokenization method in S-gram to create our tokenizer,
thereby to generate three kinds of sequences, which is the first
step of MSgram. SBT Traversal mechanism essentially uses a
series of brackets to reserve code’s structure information to
make its sequences recoverable to AST and transforms each
node of AST into tokens for constructing sequences. Set the
following contract function sample as a simple example and
the Figure 2 shows the AST of this function which is used for
transferring a Ehters to the account address recv:
function sample (uint a, address recv) public {

 recv.transfer(a);
}

Fig. 2. The AST of function sample

More specifically, since leaf nodes in AST are composed by
type and value, while non-leaf nodes are composed by type only.
The original SBT Traversal uses four tokens: “(”, “type / type-

value”, “)” and “ type / type-value” to represent a non-leaf / leaf
node in AST, as well as arrange tokens in a nested manner to
represent code structure [7], while actually, in NLMs, we cannot
distinguish different brackets of different nodes by this way for
every bracket with the same probability in NLM, causing us lose
the structure range information of different nodes. On the second
hand, too many insignificant tokens increase the perplexity of
normal sequences with different degrees, which increases the
model’s false positive rate. Besides, former literature has studied
adequately and testified that researchers should tokenize the
source code in a relatively high level to detect vulnerability on
semantic, otherwise the NLM could only detect syntactic errors,
which is the work of compilers [11]. Therefore, we modify the
SBT Traversal basically in the following way: 1) For non-leaf
nodes denoting structures such as FunctionDef,
ExpressionStatement and etc. We express them by two tokens:
“(type” and “ type)” so that the language model can differentiate
structures’ range from themselves with their corresponding
probabilities concisely. 2) For those leaf nodes without range
information needs to be kept such as ElementaryTypeName-
uint, VariableName-a, etc. We express them by one token:
“type-value”, thereby to drop insignificant tokens but guarantees
their integrity of necessary information. 3) We also add
characteristics of the tokenization standard S-gram used, such as
add a “call_min_gas” token when using transfer function, to
make our tokenizer focus mainly on Ethereum smart contracts.
Then after processed by tokenization, the abovementioned code
snippet can be extracted into a combined sequence like below,
we adopt different indentations to show its structure intuitively:

Combined Sequence:
(FunctionDef
 FunctionName-sample
 Visibility-public
 (VariableDeclaration
 ElementaryTypeName-uint VariableName-a
 VariableDeclaration)
 (VariableDeclaration

894

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

 ElementaryTypeName-uint VariableName-a
 VariableDeclaration)
 (Block

 (ExpressionStatement
 (FunctionInvoc
 (MemberAccess

VariableName-recv FunctionName-transfer
call_min_gas

 MemberAccess)
 (Arguments VariableName-a Arguments)
 FunctionInvoc)

 ExpressionStatement)
 Block)
FunctionDef)

From above sequence, we can recover it back to AST, since
the structure information is reserved, at the same time, each leaf-
node hold their type and their value to reserve their text
information. For structure sequence, we delete all the leaf nodes,
which means we extract it in a much higher semantic level and
only keep the code structure information. For text sequence, we
keep those leaf nodes as well as specifier tokens to denote a
certain intention’s start, such as FunctionSpecifier-function,
which means a start of a function. By the basic rules above, we
create a tokenizer by the tool [12] solidity-parser-antlr to
generate three kinds of sequences for the whole data set. For the
code snippet above, its structure and text sequence are shown
below in a similar way respectively:

Structure Sequence:
(FunctionDef
 (VariableDeclaration VariableDeclaration)
 (VariableDeclaration VariableDeclaration)
 (Block
 (ExpressionStatement
 (FunctionInvoc

 (MemberAccess MemberAccess)
 (Arguments Arguments)
 FunctionInvoc)

 ExpressionStatement)
 Block)
FunctionDef)

Text Sequence:

FunctionSpecifier-function FunctionName-sample
Visibility-public ElementaryTypeName-uint VariableName-a
ElementaryTypeName-address VariableName-recv
VariableName-recv FunctionName-transfer call_min_gas
VariableName-a

C. Model Parameters and Thresholds
This section introduces the parameters (i.e. gram number,

sequence length and minimum token occurrence) and
thresholds (i.e. minimum perplexity and top flagged
vulnerability amount) used in model training and optimization.
Different from other literature adopting NLM [6, 11, 13, 14],
we add another new threshold which is the minimum perplexity
score to label the potential vulnerabilities together with the top
flagged vulnerability amount, thereby to make the candidate
vulnerability list in audited result dynamic with different NLMs.

Gram Number: An n-gram language model with
different n will mark different perplexity score for a same
sequence. Due to the former study [6] has verified that
when the n larger than 5 the performance of NLM
decreased in smart contracts vulnerability auditing, thus
we evaluate n with 2-6 to find the most appropriate one
in our experiment.
Sequence Length: Sequence length represents the
number of tokens in a sequence. If we only detect the
whole sequence of a contract, we cannot accurately
localize the vulnerable row or position. Thus researchers
study vulnerability auditing using NLM normally break
the whole sequence into snippets. Nevertheless, since
different snippets may reflect different scenarios either
vulnerable or not, different length of sequences also
affect the performance in vulnerability auditing. In our
experiment, we set the sequence length as 10,20,30,40,50
respectively to observe their impacts. Since the
experiment empirically testify that the precision of the
separate audited result increases steadily with the
increment of sequence length, where we cannot optimize
the NLM by this parameter, instead we evaluate the
MSgram under each fixed sequence length.
Minimum Perplexity: The minimum perplexity is one of
the thresholds used in constructing candidate
vulnerability list and those sequences with higher
perplexity score than predefined minimum perplexity
score would be labeled as potential vulnerable sequence.
Since same contracts with different NLMs have different
perplexity range and distribution for their sequences
snippets (e.g. some NLMs may mark the perplexity score
of a collection of sequences in a range of 1-20, while
others may mark them in a range of 100-10000), setting
a same minimum perplexity for them when
implementing the vulnerability auditing would lead to an
unfair comparison among NLMs. Besides even if we
normalize them into a fixed range such as 0-1, their
distribution is still different and without any change. In
this case, after each collection of sequences is fed into
their corresponding trained NLMs and obtain their
collections of perplexity scores, we all evenly set three
minimum perplexities within the range of the minimum
and the median of their entire perplexity scores
respectively to ensure we can capture more than half of
those true vulnerabilities every time under this threshold
and try to keep fair comparison in different NLMs.
Top Flagged Vulnerability Amount: The top flagged
vulnerability amount is another threshold used in
constructing candidate vulnerability list. After we select
a series of sequences with higher perplexity than the
predefined minimum perplexity score, we rank them in
descending order and only capture those sequences
within the range of the top flagged vulnerability amount
to further filter the candidate vulnerability list. For each
collection of perplexity score, we select six numeric
values below or around the mean of this collection of
perplexity score to ensure we have the chance of
capturing all vulnerable sequences of each smart contract
under this threshold and try to keep a fair comparison as
well.

895

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

Minimum Token Occurrence: Setting the minimum
token occurrence when building NLM can generalize the
model to avoid incorrectly auditing for some non-
vulnerable sequence. In our experiment, we convert all
the tokens those only appear three times to <UNK> as
the another parameter of NLM, which is a testified
practice in NLP study [15].

D. Combination Strategies
After recording the parameter and threshold combinations of

optimized NLMs of each sequence type under each sequence
length, we start to combine their separate audited results, which
is the last step of MSgram. In this section, we try two general
kinds of strategies for combination. Each strategy includes two
steps for exploration, the first step is combining by sequence
type, i.e. integrating audited results based on different
semantics, while the second step is a further pruning by
sequence length to try to further prune false positives. The
following part we firstly introduce the step 1 of each strategy
respectively, then introduce the step 2 of them in the last
paragraph of this section.

The first strategy is Intersection. An obvious principle is if a
sequence or its sub-sequence can be detected as vulnerable by
more than one Detector of different sequence types, it has a
much more opportunity to be a true vulnerability. Since the
sequence length represents the number of tokens in a sequence,
thus even with same sequence length, the range of sequences in
a contract of different sequence types are various for different
semantic levels. In this case, we cannot simply combine the
separate audited results. Instead, we adopt those sub-sequences
(i.e. sequences within the range of its long sequences in smart
contracts) to prune their long sequences in corresponding
audited results. Furthermore, the range of structure sequences is
longer than that of text sequences and combined sequences
under same sequence length in a same contract, which means
text sequences and combined sequences are always sub-
sequences of structure sequences. Thus, as the 1st step of
Intersection, we adopted that if a sequence is confirmed as
vulnerable in the Structure Sequence1 and its sub-sequence in
Combined Sequence or Text Sequence got vulnerable confirmed
as well, then this sequence is labeled as vulnerable. More
formally, we get a new candidate vulnerable set of audited result
for the smart contract i by the following formula Sz(i) :

ܵ௭(݅) = ራ ,ݖ)ௌ௧௥௨௖௧ܴܣ (ௌ௧௥௨௖௧ߠ = ,݆)௘௫௧்ܴܣ)൫∧ ܧܷܴܶ (௘௫௧்ߠ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݆) ⊆ ∨൯(ݖ)ܴ݁݃݊ܽ ,݇)஼௢௠௕ܴܣ) (஼௢௠௕ߠ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݇) ⊆ ௭,௝,௞ ∈ ௜ ∀ (((ݖ)ܴ݁݃݊ܽ (4)

The ARStruct(z,θStruct) represent the audited result for
structure sequence z in contract i by the optimized NLMs with
best parameter and threshold combination θStruct, so on so forth
for ARText(j,θText)andARComb(k,θComb). Range (z)represents the
range of sequence z, so on so forth for Range(j) and Range(k). ∪ represents the union of each sequence z satisfied the formula
4.

The second strategy is Union. Since those sequences are
generated from different tokenization standards, leading them to
capture different semantics by different token arrangements and
semantic levels. Therefore, if we take a union way to combine
their audited results, it should capture more true vulnerabilities
than models that only apply one tokenization. In this case, we

use the audited results of the other two kinds of sequences to
trim the false negatives for the audited results of the structure
sequence in a union way, which is the 1st step of Union strategy.
Specifically, in addition to keeping sequences labeled as
vulnerable in audited results for Structure Sequence, once a sub-
sequence of a structure sequence is identified as vulnerable in
Text Sequence or Combined Sequence, we label this structure
sequence as a vulnerable. More formally, we obtain another new
candidate vulnerable set of audited result for the smart contract
i by the following formula Sz(i):

ܵ௭(݅) = ራ ,ݖ)ௌ௧௥௨௖௧ܴܣ (ௌ௧௥௨௖௧ߠ = ,݆)௘௫௧்ܴܣ)∨ ܧܷܴܶ (௘௫௧்ߠ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݆) ⊆ ∨((ݖ)ܴ݁݃݊ܽ ,݇)஼௢௠௕ܴܣ) (஼௢௠௕ߠ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݇) ⊆ ௭,௝,௞ ∈ ௜ ∀ ((ݖ)ܴ݁݃݊ܽ (5)

Here we introduce the 2nd step of each strategy. When comes
to this step, all audited results have combined based on the
structure type. Thus, in this step, we further prune false positives
by different sequence length, which means the 2nd step is the
same in both strategies. Basically, we use the audited result of
previous smaller sequence length to prune the false positives in
that of current sequence length, e.g. using audited result of
sequence length 10 to prune the false positives in that of
sequence length 20. The rationale of 2nd step is if a vulnerability
gets confirmed in multiple sequences of different lengths, it has
a great chance to be a true vulnerability. For instance, in audited
results of same sequence type but different sequence length, if a
sequence BC is labeled with vulnerable in an audited result of
sequence length 2 and in another audited result of sequence
length 3, a sequence ABC is also labeled with vulnerable. Since
BC is a sub-sequence of ABC, there’s a great chance that a
vulnerability exists in ABC, thus we labeled ABC with
vulnerable, and otherwise it should be labeled with non-
vulnerable to reduce false positives. More formally, we obtain
the final candidate vulnerable set of the audited result for the
smart contract i by the following formula (6). ARSL+10(ݖ)
represents the audited result of structure sequence z in contract i
under sequence length sl+10 (for our interval is 10 for each
sequence length) processed by 2nd step, so on so forth for
ARSL(݆) . But the performance of the above strategies’
application and combination need further empirical verification,
which will be studied in Section IV.ܵ௭(݅) = ራ (ݖ)ௌ௅ାଵ଴ܴܣ = (݆)ௌ௅ܴܣ൫∧ ܧܷܴܶ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݆) ⊆ ൯∀ ௭,௝ ∈ ௜(ݖ)ܴ݁݃݊ܽ (6)

IV. EXPERIMENTS

A. Experimental Design and Evaluation Metrics
The whole experiments mainly follow the steps discussed

in Section III, including the data collection, NLM optimization,
combination strategy exploration and the comparison with
baseline. The baseline paper S-gram utilize accuracy as the
evaluation metrics, which is actually unfair and meaningless.
Because vulnerable sequences only occupy an extremely little
part in the whole sequence collection, which means even the
vulnerability detector can only detect very few true
vulnerabilities, its performance in accuracy still can be very
high. Therefore, the accuracy metric cannot reliably reflect the
true performance of the model. As such, in our experiment,
we adopt the precision, recall and F-measure to assess the
model’s performance on the whole train set and test set.

1. We adopt the “Combined Sequence” with initial capital letters to
represent the collection of combined sequences, which is also
applicable to “Text Sequence” and “Structure Sequence”.

896

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

Precision measures a model’s performance of detecting true
vulnerabilities among labeled vulnerabilities while recall
measures a model’s performance of detecting true
vulnerabilities among the whole true vulnerabilities. And F-
measure assesses the model’s performance based on both
metrics above. Only when the model’s performance in
precision and recall are both high, its F-measure will be high.

B. Dataset Collection and Construction
To make a fair comparison with the original Sgram, we

retrieve all smart contracts used in the original S-gram from
Etherscan.io [8], and adopt the Oyente [16] to confirm
vulnerabilities for those contracts and generate test reports,
which follows the same way applied in the literature of S-gram.
However, we find there’re a lot of same smart contracts but with
different contract addresses, which is caused by deploying same
contracts more than one time on Etherscan.io. This
circumstance might decrease the perplexity of both normal and
defective sequences of repeatedly deployed contracts, causing
the experimental results imprecise. Therefore, we delete all the
duplicated contracts and finally we obtain totally over 7200
smart contracts as our whole dataset. We divide the whole
dataset into two parts of trainset (90%, around 6.5 thousand
smart contracts) and test set (10%, around 700 smart contracts).
The whole data set has been published in github2, including
source code and test reports that record location and type of
vulnerabilities.

C. Experiment Devices
Our experiments are conducted on a Windows10 laptop with

6 cores 12 threads of Intel Core 2.20GHz i7-8750H CPU, 16GB
RAM and 512GB SSD.

D. Optimization for the NLM
In this part, we adjust those parameter and threshold

combinations discussed in the section III and investigated their
influence on each single NLM. In previous studies [3, 9 ,13],
researchers tend to fix the sequence length and top flagged
vulnerability firstly to find a gram number with highest precision
or maximum average true vulnerabilities. And by this way of

adjusting one parameter while fixing others to further adjust the
rest of parameters. However, this kind of greedy optimization
method cannot find the best parameter and threshold
combination, since it has no chance of testifying every
combination of those parameters and thresholds. Thus, in our
experiments, we try to exploit all the parameters and thresholds
together to form as many as different combinations as we can
for each single NLM’s construction to find the best combination.

During the whole experiments, we try different
combinations on those parameters and thresholds and
constructed 5*5*3*6*3=1350 models in total for comparison
on the precision of the whole train set. Then the model with the
highest precision under each sequence length in each sequence
type is selected as the optimized NLM. Table I presents
parameter and threshold combination of each optimized NLM
for three kinds of sequence types under different sequence
length. Table II presents their performances in precision, recall
and F-measure. Obviously, regardless of sequence types, the
highest value of each metric almost appears when auditing
longest sequences. On the other hand, by horizontally
comparison, the performance of NLMs for Text Sequence are
always the best under each sequence length, which means this
kind of tokenization standard captures more useful information
in vulnerability detection.

We also present Figure 3 to show their performance
variations among five sequence lengths clearly. According to
Figure 3, we find that, for each sequence type, with the
increment of sequence length, each of the evaluation metric is
generally in ascend order, especially the precision, which is also
demonstrated in the literature of S-gram [6]. It is because the
increment of sequence length leads to the overlap of vulnerable
snippets, which means a sequence may consist of more
vulnerabilities, causing those vulnerabilities easier to be
detected to some extent. Nevertheless, a very long sequence is
useless in localizing vulnerability in a small range, thus
developers should refer to the actual situation to select a proper
sequence length and we cannot optimize NLM on it. As such,
in later comparison with baseline, we compare the performance
under each sequence length, which follows the same way used
in S-gram paper.

TABLE I. THE PARAMETER AND THRESHOLD COMBINATION OF EACH OPTIMIZED NLM FOR THREE KINDS OF SEQUENCE TYPES UNDER DIFFERENT
SEQUENCE LENGTH

Optimized NLM For Combined Sequence Optimized NLM For Text Sequence Optimized NLM For Structure Sequence
Sequence
Length

Gram
Number

Minimum
Perplexity

Top Flagged
Vulnerability Amount

Gram
Number

Minimum
Perplexity

Top Flagged
Vulnerability Amount

Gram
Number

Minimum
Perplexity

Top Flagged
Vulnerability Amount

10 3 100 30 2 70 40 6 30 20
20 2 20 60 2 30 60 3 5 20
30 2 7 130 3 7 80 3 3 40
40 5 7 180 2 30 130 6 4 50
50 5 5 200 3 7 150 4 4 150

TABLE II. THE PERFORMANCE OF EACH OPTIMIZED NLM FOR THREE KINDS OF SEQUENCE TYPES UNDER DIFFERENT SEQUENCE LENGTH

Optimized NLM For Combined Sequence Optimized NLM For Text Sequence Optimized NLM For Structure Sequence
Sequence
Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 0.1050 0.1172 0.0580 0.1743 0.1850 0.1240 0.1784 0.1443 0.0976
20 0.1532 0.1614 0.1038 0.2853 0.2473 0.1958 0.2724 0.1379 0.1040
30 0.2112 0.2881 0.1923 0.3534 0.3009 0.2417 0.3201 0.2018 0.1683
40 0.2796 0.2389 0.1776 0.3954 0.3206 0.2655 0.3829 0.2022 0.1673
50 0.3105 0.2816 0.2172 0.4318 0.3121 0.2680 0.4198 0.3571 0.3119

2. https://github.com/yz1019117968/MSgramDataset.git

897

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The Performance of Each Optimized NLM for Three Kinds of Sequence Types Under Different Sequence Lengths

E. Experiments on Combination Strategies
In this section, we conduct a series of experiments on the two

combination strategies proposed in section III to explore the way
of exploiting the audited results from multi-semantics.

For the Intersection strategy, we focus on its improvement
of precision. After implemented the combination by sequence
type and pruning by sequence length, we present the Table Ⅲ to
demonstrate the precision of audited results under each sequence
length before and after applying Intersection strategy. Since the
strategy is applied based on audited result of Structure Sequence,
we set its precision as an original reference. Figure 4 shows the
improvements of two steps under Intersection strategy towards
the original precision and the precision after 1st step respectively,
as well as this strategy’s final improvement towards the original
precision. Each box represents the improvements on precision
under five sequence lengths respectively, the green dotted line
represents the mean improvement among five sequence lengths.
It’s obvious that the improvement by the 1st step is small
compared with that of the 2nd step. Based on the Table Ⅳ which
shows the Figure 4’s information by accurate numbers, we find
that the improvement by the 1st step up to 15.53%, averagely
8.23% but the improvement by the 2nd step can up to 51.60%,
averagely 20.50%. The final precision of audited results under
each sequence length achieves improvement by up to 69.08%,
averagely 26.08% with respect to the original precision.
Nevertheless, their recall and F-measure decline, which is
caused by a small part of the incorrect removal of true positives
during pruning. Due to this strategy is used for boosting the
detecting precision, the little decline in recall and F-measure can
be tolerated. Therefore, we keep this strategy and adopt it in
security auditing stage.

TABLE III. THE PRECISION BEFORE AND AFTER THE INTERSECTION
STRATEGY UNDER EACH SEQUENCE LENGTH

Sequence
Length Original

After the Intersection Strategy
1st Step: Combined by

Sequence Type
2nd Step: Pruning by

Sequence Length
10 0.1784 0.2061 0.2061
20 0.2724 0.3038 0.4606
30 0.3201 0.3416 0.3731
40 0.3829 0.3948 0.4638
50 0.4198 0.4376 0.4538

Average 0.3147 0.3368 0.3915

TABLE IV. THE IMPROVEMENT ON PRECISION AFTER THE INTERSECTION
STRATEGY UNDER EACH SEQUENCE LENGTH

Sequence
Length

Improvement of Intersection Strategy Final
Improvement1st Step: Combined

by Sequence Type
2nd Step: Pruning by

Sequence Length
10 15.53% / 15.53%
20 11.53% 51.60% 69.08%
30 6.74% 9.20% 16.56%
40 3.11% 17.48% 21.14%
50 4.23% 3.71% 8.10%

Average 8.23% 20.50% 26.08%

Fig. 4. The Improvements on Precision of the Step 1, Step 2 Under
Intersection Strategy and this Strategy’s Final Improvement

For the Union strategy, we mainly focus on the final result
of whether it can find more vulnerabilities. Similarly, after
implemented the combination by sequence type and pruning by
sequence length, we present the Table Ⅴ to demonstrate the
performance on precision, recall and F-measure before and after
applying Union strategy for audited results under each sequence
length. Similarly, we adopt the performance of audited results
for Structure Sequence as the original reference to show the
improvements. Figure 5 adopts three sub-figures to demonstrate,
for each metric, the improvements in step 1, step 2 under the
Union strategy towards the original precision and the precision
after 1st step respectively, as well as this strategy’s final
improvement towards the original precision. For every sub-
figure, each box represents the five improvements on its metric
under five sequence lengths respectively, the green dotted line

898

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

represents the mean improvement on this metric among five
sequence lengths. It’s obvious that the 1st step’s improvements
on recall and F-measure are great but 2nd step’s are weak and
even negative. However, their improvements on precision are
both weak. More specifically, Table Ⅵ shows the Figure 5’s
information by accurate numbers, from which we find that, after
1st step, the recall achieves improvements by up to 279.38%,
averagely 210.08% and the F-measure by up to 182.97%,
averagely 119.48% after the combination by sequence type with
comparison to the original performance, although the precision
declines a little of 5.63% on average. Nevertheless, after the 2nd

step, the precision averagely improves only by 1.79% while the
recall and F-measure both decline averagely by 14.73% and
8.63%, which isn’t worth for pruning. As such, in the later
security auditing stage, for the strategy of Union, we only adopt
the 1st step of combination by sequence type and drop the 2nd

step.

F. Comparison with the Baseline
After the models are trained and the combination strategies

are configured, we start to adopt them on test set to get an
unbiased estimation for the performance of the MSgram and
make a comparison with the baseline. Since the paper of S-gram
did not publish its source code, we tried our best to re-implement

one for the comparison. The following Table Ⅶ shows the
performance of MSgram with both combination strategies and
of the baseline we re-implemented. Table Ⅷ presents the
improvement of MSgram with respect to the baseline. Figure 6
reflect the content of Table Ⅶ and Table Ⅷ intuitively. It’s
obvious that, in test set, the MSgram’s precision in vulnerability
detecting can be up to 51.16% in sequence length 40 under the
Intersection strategy while, under the Union strategy, the
precision, recall and F-measure can be up to 38.97% in sequence
length 50, 66.02% in sequence length 30 and 42.11% in
sequence length 50 respectively. Then compared with S-gram,
the Intersection audited result of MSgram can improve the
precision by up to 106.59%, averagely 44.24%. Under sequence
length 30 and 50, the improvement appears in all three metrics.
While the Union audited result of MSgram, although averagely
2.26% decline in precision, can improve the recall by 360.55%
at most, averagely 306.50% and the F-measure by 271.02% at
most, averagely 224.22%. More specifically, under sequence
length 20, 30, 40, MSgram outperforms the baseline in all three
measures. Thus, both the Intersection and the Union strategy can
obtain greatly improvements on their focusing measures, as well
as keep stability or even excel on other measures. As such, the
MSgram outperformed the baseline on a great extent.

TABLE V. THE PRECISION, RECALL AND F-MEASURE BEFORE AND AFTER THE UNION STRATEGY UNDER DIFFERENT SEQUENCE LENGTH

Original Performance After the Union Strategy
1st Step: Combined by Sequence Type 2nd Step: Pruning by Sequence Length

Sequence Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 0.1784 0.1443 0.0976 0.1499 0.5124 0.2019 0.1499 0.512 0.2019
20 0.2724 0.1379 0.1040 0.2550 0.5232 0.2943 0.2547 0.496 0.2862
30 0.3201 0.2018 0.1683 0.3186 0.6498 0.3719 0.3297 0.596 0.3679
40 0.3829 0.2022 0.1673 0.3730 0.6120 0.4030 0.3775 0.554 0.3824
50 0.4198 0.3571 0.3119 0.4082 0.6838 0.4548 0.4187 0.438 0.3384

Average 0.3147 0.2087 0.1698 0.3009 0.5962 0.3452 0.3061 0.519 0.3154

TABLE VI. THE IMPROVEMENT ON PRECISION, RECALL AND F-MEASURE AFTER THE UNION STRATEGY UNDER DIFFERENT SEQUENCE LENGTH

Improvement on Precision, Recall and F-Measure After the Union Strategy Final Improvement1st Step: Combined by Sequence Type 2nd Step: Pruning by Sequence Length
Sequence
Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 -16.00% 254.97% 106.78% / / / -16.00% 254.97% 106.78%
20 -6.40% 279.38% 182.97% -0.10% -5.10% -2.80% -6.40% 279.38% 182.97%
30 -0.50% 221.94% 120.92% 3.49% -8.30% -1.10% -0.50% 221.94% 120.92%
40 -2.60% 202.64% 140.93% 1.20% -9.60% -5.10% -2.60% 202.64% 140.93%
50 -2.80% 91.46% 45.81% 2.56% -36.00% -25.60% -2.80% 91.46% 45.81%

Average -5.60% 210.08% 119.48% 1.79% -14.70% -8.60% -5.60% 210.08% 119.48%

Fig. 5. The Improvement on Precision,Recall, F-Measure of the Step 1, Step 2 Under Union Strategy and this Strategy’s Final Improvement

899

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The Performance of Baseline and MSgram

TABLE VII. THE PERFORMANCE OF BASELINE AND MSGRAM UNDER DIFFERENT SEQUENCE LENGTH

Baseline MSgram in Intersection Strategy MSgram in Union Strategy
Sequence
Length 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Precision 0.1791 0.2507 0.3006 0.3633 0.4112 0.2176 0.5179 0.3972 0.5116 0.4942 0.1501 0.2571 0.3196 0.3679 0.3897

Recall 0.1423 0.1366 0.1433 0.1510 0.1465 0.1036 0.0844 0.1441 0.1336 0.1540 0.5051 0.5175 0.6602 0.6020 0.6439

F-Measure 0.0937 0.0972 0.1020 0.1129 0.1138 0.0691 0.0469 0.1173 0.1075 0.1374 0.2030 0.3001 0.3785 0.4004 0.4211

TABLE VIII. THE IMPROVEMENT OF THE MSGRAM UNDER DIFFERENT SEQUENCE LENGTH

Improved by MSgram in Intersection Strategy Improved by MSgram in Union Strategy
Sequence
Length 10 20 30 40 50 Average 10 20 30 40 50 Average

Precision 21.5% 106.59% 32.11% 40.81% 20.19% 44.24% -16.20% 2.56% 6.31% 1.27% -5.23% -2.26%

Recall -27.2% -38.21% 0.53% -11.52% 5.09% -14.26% 255.05% 278.75% 360.55% 298.68% 339.48% 306.50%

F-Measure -26.3% -51.78% 14.94% -4.80% 20.74% -9.43% 116.54% 208.71% 271.02% 254.71% 270.14% 224.22%

V. THREATS TO VALIDITY

Our paper includes the following threats to validity:
The Re-implementation for the baseline. Since the

source code of S-gram was not published, we tried our best
to follow its every experimental detail and re-implemented
one for comparison with our improved MSgram model. The
re-implemented S-gram model presents a higher precision
than the one in its paper but with a lower accuracy. One
possible reason is the smart contracts the S-gram paper used
includes a lot of duplicates (we pointed out in Section IV-B),
which improves the probability of both vulnerable and
invulnerable sequences. At the same time, due to the
invulnerable sequences among those should occupy a great
part, causing the relatively high accuracy of the S-gram, even
if its precision is low.

Vulnerabilities labeled by a symbolic execution tool.
We followed the work of S-gram to use a symbolic execution
tool named Oyente to confirm vulnerabilities. According to
the paper of Oyente, it has a low false positive rate of only
6.3%, which means the dataset still have a small part of
sequences mislabeled. Even if it is labeled by humans
manually, mislabeled data cannot be avoided either. But

actually, on the other hand, using the same data improves
comparability with baseline.

VI. RELATED WORK

Smart contract vulnerability auditing. Since the
vulnerable nature of smart contracts, a lot of researchers have
been devoting themselves into this fields and proposed
various attempts [18]. Wu H et al. [19] adopted the mutation
testing in smart contract testing. Luu et al. [16] proposed a
symbolic execution technique named Oyente to detect
contracts’ vulnerabilities based on several predefined
patterns. Jiang B et al. [10] put forward a tool, namely
ContractFuzzer, with Application Binary Interface (ABI)
specification based fuzzing input relying on predefined test
oracles. Similarly, Liu et al. [20] also adopted fuzzing
techniques and introduced ReGuard but only targeted
reentrancy risk of smart contracts. The method based on
predefined detecting patterns can indeed audit vulnerabilities
in a high precision but is also restricted by those patterns.
Therefore, other researchers raised data-driven approaches
that mainly applied various language models, such as Liu H
et al. [6] applied n-gram language model to analyze smart
contracts’ vulnerabilities in the code sequences level.

900

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

Language model in software engineering. The language
model has been widely applied in software engineering field,
since the essence of programming code is very similar to
human natural language but with stricter structure. For
example, Sureka A et al. [21] applied the language model to
detect duplicate bug reports. Han S et al. [14] proposed a code
completion method from abbreviated input using Markov
Chain which is the base of language model. In the field of
code vulnerability auditing, traditional projects such as C and
Java projects have tried language models [23]. Ray B et al.
[13] studied the buggy code by n-gram models and testified
that buggy code lines are much more unnatural than non-
buggy lines which provided the basis of detecting code
defects using language models. Wang S et al. [11] applied n-
gram language model to analyze code sequences extracted
from some Java projects, detecting code defects by capturing
semantic information. Nevertheless, those studies including
the S-gram tokenized code only by one tokenization standard,
where some of the semantic information cannot be fully
reflected within restricted sequence length. Therefore, our
MSgram adopts multiple tokenization standards to extract
code semantic information, which further boosts the
performance of vulnerability detection for smart contracts.

VII. CONCLUSION

In this paper, we implemented MSgram and provided two
optional combination strategies of Intersection and Union to
exploit multi-semantics. Experimental results show that if
developers tend to boost their auditing precision, adopting the
Intersection strategy could be better. However, if they focus
on detecting more true vulnerabilities, the Union strategy is a
good choice. Afterwards, we made a comprehensive
comparison with the baseline, which demonstrated that the
MSgram with multi-semantics outweighed the baseline in the
performance of vulnerability detection. The MSgram with
either the Intersection or the Union strategy not only obtains
greatly improvements on their focusing measures but also
keep stability or even excel on other measures. In this case, we
came to the conclusion that the novel concept of analyzing
smart contracts based on multiple semantics indeed performed
much better than that based on single semantic in vulnerability
auditing.

ACKNOWLEDGEMENT

This work is supported in part by the General Research
Fund of the Research Grants Council of Hong Kong
(No.11208017) and the research funds of City University of
Hong Kong (7005028, 7005217), and the Research Support
Fund by Intel (9220097), and funding supports from other
industry partners (9678149, 9440227, 9440180 and 9220103).

REFERENCES

[1] G. Wood, "Ethereum: A secure decentralised generalised transaction
ledger," Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32,
2014.

[2] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, "A survey on the security
of blockchain systems," Future Generation Computer Systems, 2017.

[3] N. Atzei, M. Bartoletti, and T. Cimoli, "A survey of attacks on
ethereum smart contracts (sok)," in International Conference on
Principles of Security and Trust, 2017: Springer, pp. 164-186.

[4] H. Chen, M. Pendleton, L. Njilla, and S. Xu, "A survey on ethereum
systems security: Vulnerabilities, attacks and defenses," arXiv preprint
arXiv:1908.04507, 2019.

[5] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, "Security analysis
methods on Ethereum smart contract vulnerabilities: a survey," arXiv
preprint arXiv:1908.08605, 2019.

[6] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, "S-gram: towards
semantic-aware security auditing for ethereum smart contracts," in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018: ACM, pp. 814-819.

[7] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, "Deep code comment
generation," in Proceedings of the 26th Conference on Program
Comprehension, 2018: ACM, pp. 200-210.

[8] "Etherscan." https://etherscan.io/ (accessed 2019).
[9] C. F. Torres and J. Schütte, "Osiris: Hunting for integer bugs in

ethereum smart contracts," in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018: ACM, pp. 664-
676.

[10] B. Jiang, Y. Liu, and W. Chan, "Contractfuzzer: Fuzzing smart
contracts for vulnerability detection," in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering, 2018: ACM, pp. 259-269.

[11] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, "Bugram: bug
detection with n-gram language models," in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, 2016: ACM, pp. 708-719.

[12] F. Bond. "solidity-parser-antlr."
https://github.com/federicobond/solidity-parser-antlr (accessed 2019).

[13] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P.
Devanbu, "On the" naturalness" of buggy code," in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016:
IEEE, pp. 428-439.

[14] S. Han, D. R. Wallace, and R. C. Miller, "Code completion from
abbreviated input," in 2009 IEEE/ACM International Conference on
Automated Software Engineering, 2009: IEEE, pp. 332-343.

[15] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of
statistical natural language processing. MIT press, 1999.

[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, "Making
smart contracts smarter," in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016: ACM,
pp. 254-269.

[17] K. Heafield, "KenLM: Faster and smaller language model queries," in
Proceedings of the sixth workshop on statistical machine translation,
2011: Association for Computational Linguistics, pp. 187-197.

[18] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh,
"Empirical vulnerability analysis of automated smart contracts security
testing on blockchains," in Proceedings of the 28th Annual
International Conference on Computer Science and Software
Engineering, 2018: IBM Corp., pp. 103-113.

[19] H. Wu, X. Wang, J. Xu, W. Zou, L. Zhang, and Z. Chen, "Mutation
testing for Ethereum smart contract," arXiv preprint arXiv:1908.03707,
2019.

[20] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, "Reguard:
finding reentrancy bugs in smart contracts," in Proceedings of the 40th
International Conference on Software Engineering: Companion
Proceeedings, 2018: ACM, pp. 65-68.

[21] A. Sureka and P. Jalote, "Detecting duplicate bug report using character
n-gram-based features," in 2010 Asia Pacific Software Engineering
Conference, 2010: IEEE, pp. 366-374.

[22] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, "On the
naturalness of software," in 2012 34th International Conference on
Software Engineering (ICSE), 2012: IEEE, pp. 837-847.

[23] N. E. Fenton and M. Neil, "A critique of software defect prediction
models," IEEE Transactions on software engineering, vol. 25, no. 5,
pp. 675-689, 1999.

901

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 08,2021 at 04:44:38 UTC from IEEE Xplore. Restrictions apply.

