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Abstract—Smart contracts vulnerability auditing is vitally 
critical to ensure transaction execution in normal on blockchain.
The current data-driven approaches normally tokenize smart 
contracts into a series of sequences according to only one 
tokenization standard for vulnerability detection purpose, 
resulting some of the semantic contexts could not be reflected 
within restricted sequence length.

To address this limitation, we generate sequences from smart 
contracts in three tokenization standards for which we utilize n-
gram language model to capture semantic contexts respectively, 
and finally exploiting our effective combination strategy of 
Intersection or Union to integrate the audited results from 
multiple semantic contexts. In order to evaluate the proposed 
approach, we applied it on over 7200 Ethereum smart contract 
samples. Experimental result shows our proposed method is 
capable of detecting vulnerabilities and competitive with the 
baseline in test sets, with improved precision of over 44% when 
Intersection is applied in their results, as well as improved Recall 
measure up by over 300% and F-measure up by 220% when Union 
is applied. Our proposed method for smart contract vulnerability 
detection, an important tool for developing quality decentralized 
software applications, is able to analyze multiple semantic contexts 
and successfully detects more true vulnerabilities with high 
precision, outperforming that of the baseline approaches.

Keywords—Software Engineering, Smart Contract, Ethereum,
N-gram Language Model, Vulnerability Auditing

I. INTRODUCTION 

Smart contracts, as the backend logics of decentralized 
applications (DApp), are a series of automatically executed 
programs written by a Turing-complete programming language 
such as solidity, first applied by Ethereum in around 2013 [1].
They operate on top of the consensus protocol of the blockchain
network for the purpose of ensuring the trading to complete 
between different parties without trust, by which people could 
remove the traditional central entities those managing the 
transaction network and operate their businesses directly peer-
to-peer, thereby to simplify the transaction procedure. As one of 
the most popular blockchain platform, Ethereum has been 

growing to a huge volume: The total Ether supply and market 
capitalization on Ethereum have been up to 100 Million Ether 
and 18 Billion USD respectively. Nevertheless, due to the 
unfamiliarity with the smart contract development and its
peculiar operation mechanism, a great amount of potential risks 
appeared in those DApps operating on the Ethereum such as the 
infamous DAO attack in 2016 leading 60 million USD loss [2-
5]. As such, vulnerability auditing on smart contracts has been 
becoming a vitally critical research area. Current data-driven
approaches such as the latest literature of S-gram [6], utilize N-
gram Language Model (NLM) to analyze token sequences 
generated based on smart contract Abstract Syntax Tree (AST).
Nevertheless, like most literatures using NLM in code defect 
prediction, the S-gram only adopted one kind of tokenization 
standard in sequences generation, leading to the ignorance of 
some semantic contexts within a restricted sequence length.

In this paper, we propose an improved model, namely Multi-
Semantic gram (MSgram), based on the S-gram to further boost 
its performance by analyzing sequences of multiple semantics.
Basically, for each smart contract, we generate sequences in 
three ways for the multi-semantic purpose: 1) Text sequence 
covering only text information, i.e. only focus on leaf nodes in 
AST when tokenization 2) Structure sequences covering only 
structure information, i.e. only focus on non-leaf nodes in AST 
when tokenization 3) Combined sequences covering both 
structure and text information of a smart contract, i.e. a 
completely AST representation. For the part of constructing the
sequences of structure, text and combined version, we modified 
the SBT Traversal proposed by Hu et al. [7] to make it more 
general in sequence extraction and fused the characteristic of 
type-based tokenization of S-gram, thereby to make the 
tokenizer focus mainly on Ethereum smart contracts.

Since each kind of sequence represent a kind of semantic, for 
their different tokens combinations and permutations, thus the 
analysis on different kind of sequence will capture different 
information. As such, we feed each kind of sequence into their 
corresponding trained NLMs respectively to capture their 
individual semantic and thereby to obtain separate audited 
results. For each smart contract, we can get three audited results 
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from above analysis of three kinds of sequences. After that, we 
adopt a combination strategy of Intersection or Union on these 
three separate audited results to integrate a multi-semantic 
analyzed audited result, i.e. the final audited result for assisting 
avoiding vulnerabilities during the development of the smart 
contracts.

We evaluate our proposed approach on 7200 Ethereum smart 
contracts gathered from Etherscan.io [8] with division into train 
set and test set. Furthermore, the whole evaluation process is 
based on two phases of model construction and security 
auditing. In model construction phase, we optimize separate 
NLMs and assess combination strategies to obtain the best 
setting of MSgram based on train set. Then in the auditing 
security phase, we build the MSgram with the pre-configured 
setting in the construction phase to make a comparison with the 
baseline based on the test set.

The result shows final audited results with high precision up 
to 51.79% (averagely 48.02%) in test set when we made an 
Intersection combination. While with a Union combination 
adopted to capture more true vulnerabilities, we obtain another 
final audited result with recall up to 66.02% (averagely 58.57%) 
and F-measure up to 0.4211 (averagely 0.3406) in test set. 
Compared with the performance of the baseline i.e. original S-
gram model in test set, the final audited result with Intersection 
strategy can improve the precision by up to 106.59% (averagely 
44.24%). For the auditing result with Union strategy, it can 
improve the recall by 360.55% at most (averagely 306.50%) and 
the F-measure by 271.02% at most (averagely 224.22%). 

In summary, the contributions of this paper include the 
following three-fold:

(1) We propose a novel concept of integrating multiple 
semantics in smart contract vulnerability auditing with N-gram 
Language Model.

(2) We put forward three tokenization standards by 
modifying the SBT Traversal and generate three kinds of 
sequences based on structure only, text only and combined
version in order to capture multi-semantics.

(3) We explore the combination strategies (Intersection 
and Union strategies) of multi-semantics and empirically study
the performance and their pros and cons.

II. BACKGROUND

A. Ethereum Smart Contracts and Vulnerabilities
Ethereum Smart contracts consist of a series of state 

variables and functions which can be invoked by Ethereum 
externally own accounts for transaction operations. Most of 
those state variables store digital assets or currency possessed by 
users and those functions manage the trading processes or 
regulations predefined by the contract deployer. Due to the 
unfamiliarity with the smart contract development and its 
peculiar operation mechanism, a lot of security risks in capital 
management and trading continuously come out.

For instance, the reentrancy risk leading the DAO attack in 
2016 is caused by a malicious attacker try a recursive manner to 
invoke a profitable function of the targeting contract repeatedly 
via his attack contract. Other instances like timestamp 
dependency risk: Some of the critical operations depending on 
timestamp could have risk of getting attacked by malicious 
attackers who change the block’s timestamp illegally to make 
profits. Vulnerabilities in smart contract as mentioned above 

won’t crash the code execution but can destroy the normal 
transaction logics predefined by contract deployers, thereby 
causes huge losses [3, 9, 10].

B. N-gram Language Model
In this paper, we adopt the N-gram Language Model (NLM) 

to analyze those token sequences generated from smart 
contracts. The core methodology of the NLM is derived from 
Markov chain which is essentially a Bayesian conditional 
probability model. It uses the continuous former n words to 
estimate the probability of the current word ti ,
i.e. P(ti|ti-(n-1),…ti-1) as shown in Equation (1). Thus, given a 
sentence, e.g. S=t1t2t3t4…tk , its probability is shown in 
Equation (2).

P൫tiหti-(n-1),…ti-1൯= 
count൫ti-(n-1),…ti-1,ti൯
count൫ti-(n-1),…ti-1൯ (1)

P(S)= ෑ P൫tiหti-(n-1),…ti-1൯k

i=1

(2)
After we train the model (i.e. we calculate each word’s 

probability of n-gram in the whole corpus), similarly with S-
gram, we also adopt the log-transformed perplexity metric to 
measure whether a token sequence is a potential vulnerability 
or not, because the form of addition can speed up the calculation 
while avoiding the floating-point number overflows downward 
caused by the too small probability after product. In the field of 
natural language process, a sentence with a higher perplexity 
score means its word sequence is scarcer, in other words, it 
tends to be an abnormal or incorrect sentence. Since vulnerable 
sequences occupy only a little part in the whole dataset, if a 
token sequence is scarce, it has a great chance to be a vulnerable 
sequence. Therefore, for those sequences with high perplexity 
scores, we put them into candidate vulnerability list. The 
perplexity log-transformed score for a whole sentence S with 
the length of K is represented by H(S) like below:

H(S)= -
1
K

෍ log P(ti|ti-(n-1)…ti-1)
K

i=1

(3)
III. METHODOLOGY

A. Model Framework Overview
The framework of the proposed MSgram includes two 

phases, i.e. the model construction phase and security auditing 
phase, respectively. Figure 1 shows the overview of MSgram 
framework.

In the model construction phase, the first step is
Tokenization. We propose three tokenization standards and 
adopt our tokenizer to extract each smart contract source code 
in the train set into three sequence collections of Combined 
Sequence, Text Sequence and Structure Sequence respectively. 
The next step is model training and optimization. We feed
each collection into the NLM tool kenlm [17] to train their
models and optimize them by different parameters and 
thresholds. Then we select those optimized NLMs based on the 
precision of their separate audited result, we named the 
optimized NLM as Detector. The final step is designing and 
assessing combination strategies. We provide two kinds of 
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combination strategies, i.e. Intersection and Union to improve 
the performance of those single Detectors and thereby generate 
a final audited result. The verified best parameter and threshold 
combination for each single Detector, as well as the effective 
combination strategy will be applied in the security auditing 
phase.

For the phase of security auditing, when an auditing target 
smart contract comes, MSgram firstly enable the tokenizer to 
extract it into three kinds of sequence collections then analyze 
token sequences by their corresponding Detectors respectively 
to output the separate audited results and finally automatically 
follow the combination strategy predefined in the construction 
stage to get the final audited results.

Fig. 1. The Framework Overview of MSgram

B. Tokenization
In this paper, we modify SBT Traversal to be more

generalized in sequence extraction. We also add characteristics 
of the tokenization method in S-gram to create our tokenizer,
thereby to generate three kinds of sequences, which is the first 
step of MSgram. SBT Traversal mechanism essentially uses a
series of brackets to reserve code’s structure information to
make its sequences recoverable to AST and transforms each 
node of AST into tokens for constructing sequences. Set the 
following contract function sample as a simple example and 
the Figure 2 shows the AST of this function which is used for 
transferring a Ehters to the account address recv:
function sample (uint a, address recv) public {             

  recv.transfer(a); 
} 

Fig. 2. The AST of function sample

More specifically, since leaf nodes in AST are composed by 
type and value, while non-leaf nodes are composed by type only. 
The original SBT Traversal uses four tokens: “(”, “type / type-

value”, “)” and “ type / type-value” to represent a non-leaf / leaf 
node in AST, as well as arrange tokens in a nested manner to 
represent code structure [7], while actually, in NLMs, we cannot 
distinguish different brackets of different nodes by this way for 
every bracket with the same probability in NLM, causing us lose 
the structure range information of different nodes. On the second 
hand, too many insignificant tokens increase the perplexity of 
normal sequences with different degrees, which increases the 
model’s false positive rate. Besides, former literature has studied 
adequately and testified that researchers should tokenize the 
source code in a relatively high level to detect vulnerability on 
semantic, otherwise the NLM could only detect syntactic errors,
which is the work of compilers [11]. Therefore, we modify the 
SBT Traversal basically in the following way: 1) For non-leaf 
nodes denoting structures such as FunctionDef, 
ExpressionStatement and etc. We express them by two tokens: 
“(type” and “ type)” so that the language model can differentiate 
structures’ range from themselves with their corresponding 
probabilities concisely. 2) For those leaf nodes without range 
information needs to be kept such as ElementaryTypeName-
uint, VariableName-a, etc. We express them by one token: 
“type-value”, thereby to drop insignificant tokens but guarantees
their integrity of necessary information. 3) We also add 
characteristics of the tokenization standard S-gram used, such as 
add a “call_min_gas” token when using transfer function, to 
make our tokenizer focus mainly on Ethereum smart contracts.
Then after processed by tokenization, the abovementioned code 
snippet can be extracted into a combined sequence like below,
we adopt different indentations to show its structure intuitively:

Combined Sequence:
(FunctionDef
     FunctionName-sample 
     Visibility-public
     (VariableDeclaration
          ElementaryTypeName-uint VariableName-a
     VariableDeclaration)
     (VariableDeclaration
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          ElementaryTypeName-uint VariableName-a
     VariableDeclaration)
     (Block

                (ExpressionStatement
     (FunctionInvoc
          (MemberAccess

VariableName-recv FunctionName-transfer
call_min_gas

          MemberAccess)
          (Arguments VariableName-a Arguments)
     FunctionInvoc)

               ExpressionStatement)
     Block)
FunctionDef)

From above sequence, we can recover it back to AST, since 
the structure information is reserved, at the same time, each leaf-
node hold their type and their value to reserve their text 
information. For structure sequence, we delete all the leaf nodes, 
which means we extract it in a much higher semantic level and 
only keep the code structure information. For text sequence, we 
keep those leaf nodes as well as specifier tokens to denote a 
certain intention’s start, such as FunctionSpecifier-function,
which means a start of a function. By the basic rules above, we 
create a tokenizer by the tool [12] solidity-parser-antlr to 
generate three kinds of sequences for the whole data set. For the 
code snippet above, its structure and text sequence are shown 
below in a similar way respectively:

Structure Sequence:
(FunctionDef    
     (VariableDeclaration VariableDeclaration)
     (VariableDeclaration VariableDeclaration)
     (Block
          (ExpressionStatement
               (FunctionInvoc

          (MemberAccess MemberAccess)
          (Arguments Arguments)
      FunctionInvoc)

          ExpressionStatement)
     Block)
FunctionDef)

Text Sequence:

FunctionSpecifier-function FunctionName-sample 
Visibility-public ElementaryTypeName-uint VariableName-a
ElementaryTypeName-address VariableName-recv 
VariableName-recv FunctionName-transfer call_min_gas  
VariableName-a

C. Model Parameters and Thresholds 
This section introduces the parameters (i.e. gram number, 

sequence length and minimum token occurrence) and 
thresholds (i.e. minimum perplexity and top flagged 
vulnerability amount) used in model training and optimization.
Different from other literature adopting NLM [6, 11, 13, 14],
we add another new threshold which is the minimum perplexity 
score to label the potential vulnerabilities together with the top 
flagged vulnerability amount, thereby to make the candidate 
vulnerability list in audited result dynamic with different NLMs.

Gram Number: An n-gram language model with 
different n will mark different perplexity score for a same 
sequence. Due to the former study [6] has verified that 
when the n larger than 5 the performance of NLM 
decreased in smart contracts vulnerability auditing, thus 
we evaluate n with 2-6 to find the most appropriate one
in our experiment.
Sequence Length: Sequence length represents the 
number of tokens in a sequence. If we only detect the 
whole sequence of a contract, we cannot accurately 
localize the vulnerable row or position. Thus researchers 
study vulnerability auditing using NLM normally break
the whole sequence into snippets. Nevertheless, since 
different snippets may reflect different scenarios either 
vulnerable or not, different length of sequences also 
affect the performance in vulnerability auditing. In our 
experiment, we set the sequence length as 10,20,30,40,50 
respectively to observe their impacts. Since the 
experiment empirically testify that the precision of the 
separate audited result increases steadily with the 
increment of sequence length, where we cannot optimize
the NLM by this parameter, instead we evaluate the 
MSgram under each fixed sequence length.  
Minimum Perplexity: The minimum perplexity is one of 
the thresholds used in constructing candidate 
vulnerability list and those sequences with higher 
perplexity score than predefined minimum perplexity
score would be labeled as potential vulnerable sequence. 
Since same contracts with different NLMs have different 
perplexity range and distribution for their sequences 
snippets (e.g. some NLMs may mark the perplexity score 
of a collection of sequences in a range of 1-20, while 
others may mark them in a range of 100-10000), setting 
a same minimum perplexity for them when 
implementing the vulnerability auditing would lead to an 
unfair comparison among NLMs. Besides even if we 
normalize them into a fixed range such as 0-1, their 
distribution is still different and without any change. In 
this case, after each collection of sequences is fed into
their corresponding trained NLMs and obtain their
collections of perplexity scores, we all evenly set three 
minimum perplexities within the range of the minimum 
and the median of their entire perplexity scores
respectively to ensure we can capture more than half of 
those true vulnerabilities every time under this threshold 
and try to keep fair comparison in different NLMs.
Top Flagged Vulnerability Amount: The top flagged 
vulnerability amount is another threshold used in 
constructing candidate vulnerability list. After we select 
a series of sequences with higher perplexity than the 
predefined minimum perplexity score, we rank them in 
descending order and only capture those sequences 
within the range of the top flagged vulnerability amount 
to further filter the candidate vulnerability list. For each 
collection of perplexity score, we select six numeric 
values below or around the mean of this collection of 
perplexity score to ensure we have the chance of 
capturing all vulnerable sequences of each smart contract
under this threshold and try to keep a fair comparison as 
well.
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Minimum Token Occurrence: Setting the minimum 
token occurrence when building NLM can generalize the 
model to avoid incorrectly auditing for some non-
vulnerable sequence. In our experiment, we convert all 
the tokens those only appear three times to <UNK> as 
the another parameter of NLM, which is a testified 
practice in NLP study [15].

D. Combination Strategies
After recording the parameter and threshold combinations of 

optimized NLMs of each sequence type under each sequence 
length, we start to combine their separate audited results, which 
is the last step of MSgram. In this section, we try two general 
kinds of strategies for combination. Each strategy includes two 
steps for exploration, the first step is combining by sequence 
type, i.e. integrating audited results based on different 
semantics, while the second step is a further pruning by 
sequence length to try to further prune false positives. The 
following part we firstly introduce the step 1 of each strategy 
respectively, then introduce the step 2 of them in the last 
paragraph of this section.

The first strategy is Intersection. An obvious principle is if a 
sequence or its sub-sequence can be detected as vulnerable by 
more than one Detector of different sequence types, it has a 
much more opportunity to be a true vulnerability. Since the 
sequence length represents the number of tokens in a sequence, 
thus even with same sequence length, the range of sequences in 
a contract of different sequence types are various for different 
semantic levels. In this case, we cannot simply combine the 
separate audited results. Instead, we adopt those sub-sequences 
(i.e. sequences within the range of its long sequences in smart 
contracts) to prune their long sequences in corresponding 
audited results. Furthermore, the range of structure sequences is
longer than that of text sequences and combined sequences
under same sequence length in a same contract, which means 
text sequences and combined sequences are always sub-
sequences of structure sequences. Thus, as the 1st step of 
Intersection, we adopted that if a sequence is confirmed as 
vulnerable in the Structure Sequence1 and its sub-sequence in 
Combined Sequence or Text Sequence got vulnerable confirmed 
as well, then this sequence is labeled as vulnerable. More 
formally, we get a new candidate vulnerable set of audited result 
for the smart contract i by the following formula Sz(i) :

ܵ௭(݅) = ራ ,ݖ)ௌ௧௥௨௖௧ܴܣ (ௌ௧௥௨௖௧ߠ = ,݆)௘௫௧்ܴܣ)൫∧ ܧܷܴܶ (௘௫௧்ߠ = ∧ ܧܷܴܶ  ܴܽ݊݃݁(݆) ⊆ ∨൯(ݖ)ܴ݁݃݊ܽ ,݇)஼௢௠௕ܴܣ) (஼௢௠௕ߠ = ∧ ܧܷܴܶ  ܴܽ݊݃݁(݇) ⊆ ௭,௝,௞ ∈ ௜ ∀ (((ݖ)ܴ݁݃݊ܽ     (4)

The ARStruct(z,θStruct) represent the audited result for 
structure sequence z in contract i by the optimized NLMs with 
best parameter and threshold combination θStruct, so on so forth 
for ARText(j,θText)andARComb(k,θComb). Range (z)represents the 
range of sequence z, so on so forth for Range(j) and Range(k). ∪ represents the union of each sequence z satisfied the formula 
4.

The second strategy is Union. Since those sequences are 
generated from different tokenization standards, leading them to 
capture different semantics by different token arrangements and 
semantic levels. Therefore, if we take a union way to combine 
their audited results, it should capture more true vulnerabilities 
than models that only apply one tokenization. In this case, we 

use the audited results of the other two kinds of sequences to 
trim the false negatives for the audited results of the structure 
sequence in a union way, which is the 1st step of Union strategy.
Specifically, in addition to keeping sequences labeled as 
vulnerable in audited results for Structure Sequence, once a sub-
sequence of a structure sequence is identified as vulnerable in 
Text Sequence or Combined Sequence, we label this structure 
sequence as a vulnerable. More formally, we obtain another new 
candidate vulnerable set of audited result for the smart contract 
i by the following formula Sz(i):

ܵ௭(݅) = ራ ,ݖ)ௌ௧௥௨௖௧ܴܣ (ௌ௧௥௨௖௧ߠ = ,݆)௘௫௧்ܴܣ)∨ ܧܷܴܶ (௘௫௧்ߠ = ∧ ܧܷܴܶ  ܴܽ݊݃݁(݆) ⊆ ∨((ݖ)ܴ݁݃݊ܽ ,݇)஼௢௠௕ܴܣ) (஼௢௠௕ߠ = ∧ ܧܷܴܶ  ܴܽ݊݃݁(݇) ⊆ ௭,௝,௞ ∈ ௜ ∀ ((ݖ)ܴ݁݃݊ܽ       (5)

Here we introduce the 2nd step of each strategy. When comes 
to this step, all audited results have combined based on the 
structure type. Thus, in this step, we further prune false positives 
by different sequence length, which means the 2nd step is the 
same in both strategies. Basically, we use the audited result of 
previous smaller sequence length to prune the false positives in 
that of current sequence length, e.g. using audited result of 
sequence length 10 to prune the false positives in that of 
sequence length 20. The rationale of 2nd step is if a vulnerability 
gets confirmed in multiple sequences of different lengths, it has 
a great chance to be a true vulnerability. For instance, in audited 
results of same sequence type but different sequence length, if a 
sequence BC is labeled with vulnerable in an audited result of 
sequence length 2 and in another audited result of sequence 
length 3, a sequence ABC is also labeled with vulnerable. Since 
BC is a sub-sequence of ABC, there’s a great chance that a 
vulnerability exists in ABC, thus we labeled ABC with 
vulnerable, and otherwise it should be labeled with non-
vulnerable to reduce false positives. More formally, we obtain 
the final candidate vulnerable set of the audited result for the 
smart contract i by the following formula (6). ARSL+10(ݖ)
represents the audited result of structure sequence z in contract i
under sequence length sl+10 (for our interval is 10 for each 
sequence length) processed by 2nd step, so on so forth for
ARSL(݆) . But the performance of the above strategies’ 
application and combination need further empirical verification, 
which will be studied in Section IV.ܵ௭(݅) = ራ (ݖ)ௌ௅ାଵ଴ܴܣ = (݆)ௌ௅ܴܣ൫∧ ܧܷܴܶ = ∧ ܧܷܴܶ ܴܽ݊݃݁(݆) ⊆ ൯∀ ௭,௝ ∈ ௜(ݖ)ܴ݁݃݊ܽ                  (6)

IV. EXPERIMENTS

A. Experimental Design and Evaluation Metrics
The whole experiments mainly follow the steps discussed 

in Section III, including the data collection, NLM optimization, 
combination strategy exploration and the comparison with 
baseline. The baseline paper S-gram utilize accuracy as the 
evaluation metrics, which is actually unfair and meaningless.
Because vulnerable sequences only occupy an extremely little 
part in the whole sequence collection, which means even the 
vulnerability detector can only detect very few true 
vulnerabilities, its performance in accuracy still can be very 
high. Therefore, the accuracy metric cannot reliably reflect the 
true performance of the model. As such, in our experiment,
we adopt the precision, recall and F-measure to assess the 
model’s performance on the whole train set and test set.

1. We adopt the “Combined Sequence” with initial capital letters to 
represent the collection of combined sequences, which is also 
applicable to “Text Sequence” and “Structure Sequence”.
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Precision measures a model’s performance of detecting true 
vulnerabilities among labeled vulnerabilities while recall 
measures a model’s performance of detecting true 
vulnerabilities among the whole true vulnerabilities. And F-
measure assesses the model’s performance based on both 
metrics above. Only when the model’s performance in 
precision and recall are both high, its F-measure will be high. 

B. Dataset Collection and Construction
To make a fair comparison with the original Sgram, we 

retrieve all smart contracts used in the original S-gram from 
Etherscan.io [8], and adopt the Oyente [16] to confirm 
vulnerabilities for those contracts and generate test reports, 
which follows the same way applied in the literature of S-gram. 
However, we find there’re a lot of same smart contracts but with 
different contract addresses, which is caused by deploying same 
contracts more than one time on Etherscan.io. This 
circumstance might decrease the perplexity of both normal and 
defective sequences of repeatedly deployed contracts, causing 
the experimental results imprecise. Therefore, we delete all the 
duplicated contracts and finally we obtain totally over 7200 
smart contracts as our whole dataset. We divide the whole 
dataset into two parts of trainset (90%, around 6.5 thousand
smart contracts) and test set (10%, around 700 smart contracts). 
The whole data set has been published in github2, including 
source code and test reports that record location and type of 
vulnerabilities.

C. Experiment Devices
Our experiments are conducted on a Windows10 laptop with 

6 cores 12 threads of  Intel Core 2.20GHz i7-8750H CPU, 16GB 
RAM and 512GB SSD.

D. Optimization for the NLM
In this part, we adjust those parameter and threshold 

combinations discussed in the section III and investigated their 
influence on each single NLM. In previous studies [3, 9 ,13],
researchers tend to fix the sequence length and top flagged 
vulnerability firstly to find a gram number with highest precision 
or maximum average true vulnerabilities. And by this way of 

adjusting one parameter while fixing others to further adjust the 
rest of parameters. However, this kind of greedy optimization 
method cannot find the best parameter and threshold 
combination, since it has no chance of testifying every 
combination of those parameters and thresholds. Thus, in our 
experiments, we try to exploit all the parameters and thresholds
together to form as many as different combinations as we can 
for each single NLM’s construction to find the best combination.

During the whole experiments, we try different 
combinations on those parameters and thresholds and
constructed 5*5*3*6*3=1350 models in total for comparison
on the precision of the whole train set. Then the model with the 
highest precision under each sequence length in each sequence 
type is selected as the optimized NLM. Table I presents
parameter and threshold combination of each optimized NLM 
for three kinds of sequence types under different sequence 
length. Table II presents their performances in precision, recall 
and F-measure. Obviously, regardless of sequence types, the 
highest value of each metric almost appears when auditing 
longest sequences. On the other hand, by horizontally 
comparison, the performance of NLMs for Text Sequence are
always the best under each sequence length, which means this 
kind of tokenization standard captures more useful information 
in vulnerability detection.

We also present Figure 3 to show their performance 
variations among five sequence lengths clearly. According to 
Figure 3, we find that, for each sequence type, with the 
increment of sequence length, each of the evaluation metric is 
generally in ascend order, especially the precision, which is also 
demonstrated in the literature of S-gram [6]. It is because the 
increment of sequence length leads to the overlap of vulnerable 
snippets, which means a sequence may consist of more 
vulnerabilities, causing those vulnerabilities easier to be 
detected to some extent. Nevertheless, a very long sequence is 
useless in localizing vulnerability in a small range, thus 
developers should refer to the actual situation to select a proper 
sequence length and we cannot optimize NLM on it. As such, 
in later comparison with baseline, we compare the performance 
under each sequence length, which follows the same way used 
in S-gram paper. 

TABLE I. THE PARAMETER AND THRESHOLD COMBINATION OF EACH OPTIMIZED NLM FOR THREE KINDS OF SEQUENCE TYPES UNDER DIFFERENT 
SEQUENCE LENGTH

Optimized NLM For Combined Sequence Optimized NLM For Text Sequence Optimized NLM For Structure Sequence
Sequence 
Length

Gram 
Number

Minimum 
Perplexity

Top Flagged 
Vulnerability Amount

Gram 
Number

Minimum 
Perplexity

Top Flagged 
Vulnerability Amount

Gram 
Number

Minimum 
Perplexity

Top Flagged 
Vulnerability Amount

10 3 100 30 2 70 40 6 30 20
20 2 20 60 2 30 60 3 5 20
30 2 7 130 3 7 80 3 3 40
40 5 7 180 2 30 130 6 4 50
50 5 5 200 3 7 150 4 4 150

TABLE II. THE PERFORMANCE OF EACH OPTIMIZED NLM FOR THREE KINDS OF SEQUENCE TYPES UNDER DIFFERENT SEQUENCE LENGTH

Optimized NLM For Combined Sequence Optimized NLM For Text Sequence Optimized NLM For Structure Sequence
Sequence 
Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 0.1050 0.1172 0.0580 0.1743 0.1850 0.1240 0.1784 0.1443 0.0976
20 0.1532 0.1614 0.1038 0.2853 0.2473 0.1958 0.2724 0.1379 0.1040
30 0.2112 0.2881 0.1923 0.3534 0.3009 0.2417 0.3201 0.2018 0.1683
40 0.2796 0.2389 0.1776 0.3954 0.3206 0.2655 0.3829 0.2022 0.1673
50 0.3105 0.2816 0.2172 0.4318 0.3121 0.2680 0.4198 0.3571 0.3119

2. https://github.com/yz1019117968/MSgramDataset.git
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Fig. 3. The Performance of Each Optimized NLM for Three Kinds of Sequence Types Under Different Sequence Lengths

E. Experiments on Combination Strategies
In this section, we conduct a series of experiments on the two 

combination strategies proposed in section III to explore the way 
of exploiting the audited results from multi-semantics.

For the Intersection strategy, we focus on its improvement 
of precision. After implemented the combination by sequence 
type and pruning by sequence length, we present the Table Ⅲ to 
demonstrate the precision of audited results under each sequence 
length before and after applying Intersection strategy. Since the 
strategy is applied based on audited result of Structure Sequence, 
we set its precision as an original reference. Figure 4 shows the 
improvements of two steps under Intersection strategy towards 
the original precision and the precision after 1st step respectively, 
as well as this strategy’s final improvement towards the original 
precision. Each box represents the improvements on precision 
under five sequence lengths respectively, the green dotted line 
represents the mean improvement among five sequence lengths.
It’s obvious that the improvement by the 1st step is small
compared with that of the 2nd step. Based on the Table Ⅳ which 
shows the Figure 4’s information by accurate numbers, we find
that the improvement by the 1st step up to 15.53%, averagely 
8.23% but the improvement by the 2nd step can up to 51.60%,
averagely 20.50%. The final precision of audited results under 
each sequence length achieves improvement by up to 69.08%, 
averagely 26.08% with respect to the original precision. 
Nevertheless, their recall and F-measure decline, which is 
caused by a small part of the incorrect removal of true positives 
during pruning. Due to this strategy is used for boosting the 
detecting precision, the little decline in recall and F-measure can 
be tolerated. Therefore, we keep this strategy and adopt it in 
security auditing stage.

TABLE III. THE PRECISION BEFORE AND AFTER THE INTERSECTION 
STRATEGY UNDER EACH SEQUENCE LENGTH

Sequence 
Length Original

After the Intersection Strategy
1st Step: Combined by 

Sequence Type
2nd Step: Pruning by 

Sequence Length
10 0.1784 0.2061 0.2061
20 0.2724 0.3038 0.4606
30 0.3201 0.3416 0.3731
40 0.3829 0.3948 0.4638
50 0.4198 0.4376 0.4538

Average 0.3147 0.3368 0.3915

TABLE IV. THE IMPROVEMENT ON PRECISION AFTER THE INTERSECTION 
STRATEGY UNDER EACH SEQUENCE LENGTH

Sequence 
Length

Improvement of Intersection Strategy Final 
Improvement1st Step: Combined 

by Sequence Type
2nd Step: Pruning by 

Sequence Length
10 15.53% / 15.53%
20 11.53% 51.60% 69.08%
30 6.74% 9.20% 16.56%
40 3.11% 17.48% 21.14%
50 4.23% 3.71% 8.10%

Average 8.23% 20.50% 26.08%

Fig. 4. The Improvements on Precision of the Step 1, Step 2 Under 
Intersection Strategy and this Strategy’s Final Improvement

For the Union strategy, we mainly focus on the final result 
of whether it can find more vulnerabilities. Similarly, after 
implemented the combination by sequence type and pruning by 
sequence length, we present the Table Ⅴ to demonstrate the 
performance on precision, recall and F-measure before and after 
applying Union strategy for audited results under each sequence 
length. Similarly, we adopt the performance of audited results 
for Structure Sequence as the original reference to show the 
improvements. Figure 5 adopts three sub-figures to demonstrate, 
for each metric, the improvements in step 1, step 2 under the 
Union strategy towards the original precision and the precision 
after 1st step respectively, as well as this strategy’s final
improvement towards the original precision. For every sub-
figure, each box represents the five improvements on its metric
under five sequence lengths respectively, the green dotted line 
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represents the mean improvement on this metric among five 
sequence lengths. It’s obvious that the 1st step’s improvements 
on recall and F-measure are great but 2nd step’s are weak and 
even negative. However, their improvements on precision are 
both weak. More specifically, Table Ⅵ shows the Figure 5’s 
information by accurate numbers, from which we find that, after 
1st step, the recall achieves improvements by up to 279.38%, 
averagely 210.08% and the F-measure by up to 182.97%, 
averagely 119.48% after the combination by sequence type with 
comparison to the original performance, although the precision 
declines a little of 5.63% on average. Nevertheless, after the 2nd

step, the precision averagely improves only by 1.79% while the 
recall and F-measure both decline averagely by 14.73% and 
8.63%, which isn’t worth for pruning. As such, in the later 
security auditing stage, for the strategy of Union, we only adopt 
the 1st step of combination by sequence type and drop the 2nd

step.

F. Comparison with the Baseline
After the models are trained and the combination strategies

are configured, we start to adopt them on test set to get an 
unbiased estimation for the performance of the MSgram and 
make a comparison with the baseline. Since the paper of S-gram 
did not publish its source code, we tried our best to re-implement

one for the comparison. The following Table Ⅶ shows the 
performance of MSgram with both combination strategies and 
of the baseline we re-implemented. Table Ⅷ presents the 
improvement of MSgram with respect to the baseline. Figure 6
reflect the content of Table Ⅶ and Table Ⅷ intuitively. It’s 
obvious that, in test set, the MSgram’s precision in vulnerability 
detecting can be up to 51.16% in sequence length 40 under the 
Intersection strategy while, under the Union strategy, the 
precision, recall and F-measure can be up to 38.97% in sequence 
length 50, 66.02% in sequence length 30 and 42.11% in 
sequence length 50 respectively. Then compared with S-gram, 
the Intersection audited result of MSgram can improve the 
precision by up to 106.59%, averagely 44.24%. Under sequence 
length 30 and 50, the improvement appears in all three metrics. 
While the Union audited result of MSgram, although averagely 
2.26% decline in precision, can improve the recall by 360.55% 
at most, averagely 306.50% and the F-measure by 271.02% at 
most, averagely 224.22%. More specifically, under sequence 
length 20, 30, 40, MSgram outperforms the baseline in all three 
measures. Thus, both the Intersection and the Union strategy can 
obtain greatly improvements on their focusing measures, as well 
as keep stability or even excel on other measures. As such, the 
MSgram outperformed the baseline on a great extent.

TABLE V. THE PRECISION, RECALL AND F-MEASURE BEFORE AND AFTER THE UNION STRATEGY UNDER DIFFERENT SEQUENCE LENGTH

Original Performance After the Union Strategy
1st Step: Combined by Sequence Type 2nd Step: Pruning by Sequence Length

Sequence Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 0.1784 0.1443 0.0976 0.1499 0.5124 0.2019 0.1499 0.512 0.2019
20 0.2724 0.1379 0.1040 0.2550 0.5232 0.2943 0.2547 0.496 0.2862
30 0.3201 0.2018 0.1683 0.3186 0.6498 0.3719 0.3297 0.596 0.3679
40 0.3829 0.2022 0.1673 0.3730 0.6120 0.4030 0.3775 0.554 0.3824
50 0.4198 0.3571 0.3119 0.4082 0.6838 0.4548 0.4187 0.438 0.3384

Average 0.3147 0.2087 0.1698 0.3009 0.5962 0.3452 0.3061 0.519 0.3154

TABLE VI. THE IMPROVEMENT ON PRECISION, RECALL AND F-MEASURE AFTER THE UNION STRATEGY UNDER DIFFERENT SEQUENCE LENGTH

Improvement on Precision, Recall and F-Measure After the Union Strategy Final Improvement1st Step: Combined by Sequence Type 2nd Step: Pruning by Sequence Length
Sequence 
Length Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

10 -16.00% 254.97% 106.78% / / / -16.00% 254.97% 106.78%
20 -6.40% 279.38% 182.97% -0.10% -5.10% -2.80% -6.40% 279.38% 182.97%
30 -0.50% 221.94% 120.92% 3.49% -8.30% -1.10% -0.50% 221.94% 120.92%
40 -2.60% 202.64% 140.93% 1.20% -9.60% -5.10% -2.60% 202.64% 140.93%
50 -2.80% 91.46% 45.81% 2.56% -36.00% -25.60% -2.80% 91.46% 45.81%

Average -5.60% 210.08% 119.48% 1.79% -14.70% -8.60% -5.60% 210.08% 119.48%

Fig. 5. The Improvement on Precision,Recall, F-Measure of the Step 1, Step 2 Under Union Strategy and this Strategy’s Final Improvement
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Fig. 6. The Performance of Baseline and MSgram 

TABLE VII. THE PERFORMANCE OF BASELINE AND MSGRAM UNDER DIFFERENT SEQUENCE LENGTH

Baseline MSgram in Intersection Strategy MSgram in Union Strategy
Sequence 
Length 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Precision 0.1791 0.2507 0.3006 0.3633 0.4112 0.2176 0.5179 0.3972 0.5116 0.4942 0.1501 0.2571 0.3196 0.3679 0.3897

Recall 0.1423 0.1366 0.1433 0.1510 0.1465 0.1036 0.0844 0.1441 0.1336 0.1540 0.5051 0.5175 0.6602 0.6020 0.6439

F-Measure 0.0937 0.0972 0.1020 0.1129 0.1138 0.0691 0.0469 0.1173 0.1075 0.1374 0.2030 0.3001 0.3785 0.4004 0.4211

TABLE VIII. THE   IMPROVEMENT OF THE MSGRAM UNDER DIFFERENT SEQUENCE LENGTH 

Improved by MSgram in Intersection Strategy Improved by MSgram in Union Strategy
Sequence 
Length 10 20 30 40 50 Average 10 20 30 40 50 Average

Precision 21.5% 106.59% 32.11% 40.81% 20.19% 44.24% -16.20% 2.56% 6.31% 1.27% -5.23% -2.26%

Recall -27.2% -38.21% 0.53% -11.52% 5.09% -14.26% 255.05% 278.75% 360.55% 298.68% 339.48% 306.50%

F-Measure -26.3% -51.78% 14.94% -4.80% 20.74% -9.43% 116.54% 208.71% 271.02% 254.71% 270.14% 224.22%

V. THREATS TO VALIDITY

Our paper includes the following threats to validity:
The Re-implementation for the baseline. Since the 

source code of S-gram was not published, we tried our best 
to follow its every experimental detail and re-implemented 
one for comparison with our improved MSgram model. The 
re-implemented S-gram model presents a higher precision 
than the one in its paper but with a lower accuracy. One 
possible reason is the smart contracts the S-gram paper used 
includes a lot of duplicates (we pointed out in Section IV-B),
which improves the probability of both vulnerable and 
invulnerable sequences. At the same time, due to the 
invulnerable sequences among those should occupy a great 
part, causing the relatively high accuracy of the S-gram, even 
if its precision is low.

Vulnerabilities labeled by a symbolic execution tool.
We followed the work of S-gram to use a symbolic execution 
tool named Oyente to confirm vulnerabilities. According to 
the paper of Oyente, it has a low false positive rate of only 
6.3%, which means the dataset still have a small part of 
sequences mislabeled. Even if it is labeled by humans 
manually, mislabeled data cannot be avoided either. But 

actually, on the other hand, using the same data improves
comparability with baseline.

VI. RELATED WORK

Smart contract vulnerability auditing. Since the 
vulnerable nature of smart contracts, a lot of researchers have 
been devoting themselves into this fields and proposed 
various attempts [18]. Wu H et al. [19] adopted the mutation 
testing in smart contract testing. Luu et al. [16] proposed a 
symbolic execution technique named Oyente to detect 
contracts’ vulnerabilities based on several predefined 
patterns. Jiang B et al. [10] put forward a tool, namely
ContractFuzzer, with Application Binary Interface (ABI)
specification based fuzzing input relying on predefined test 
oracles. Similarly, Liu et al. [20] also adopted fuzzing 
techniques and introduced ReGuard but only targeted
reentrancy risk of smart contracts. The method based on 
predefined detecting patterns can indeed audit vulnerabilities 
in a high precision but is also restricted by those patterns. 
Therefore, other researchers raised data-driven approaches 
that mainly applied various language models, such as Liu H 
et al. [6] applied n-gram language model to analyze smart 
contracts’ vulnerabilities in the code sequences level.
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Language model in software engineering. The language
model has been widely applied in software engineering field, 
since the essence of programming code is very similar to 
human natural language but with stricter structure. For 
example, Sureka A et al. [21] applied the language model to 
detect duplicate bug reports. Han S et al. [14] proposed a code 
completion method from abbreviated input using Markov 
Chain which is the base of language model. In the field of 
code vulnerability auditing, traditional projects such as C and 
Java projects have tried language models [23]. Ray B et al. 
[13] studied the buggy code by n-gram models and testified 
that buggy code lines are much more unnatural than non-
buggy lines which provided the basis of detecting code 
defects using language models. Wang S et al. [11] applied n-
gram language model to analyze code sequences extracted 
from some Java projects, detecting code defects by capturing 
semantic information. Nevertheless, those studies including 
the S-gram tokenized code only by one tokenization standard, 
where some of the semantic information cannot be fully 
reflected within restricted sequence length. Therefore, our
MSgram adopts multiple tokenization standards to extract 
code semantic information, which further boosts the 
performance of vulnerability detection for smart contracts. 

VII. CONCLUSION 

In this paper, we implemented MSgram and provided two 
optional combination strategies of Intersection and Union to 
exploit multi-semantics. Experimental results show that if 
developers tend to boost their auditing precision, adopting the 
Intersection strategy could be better. However, if they focus 
on detecting more true vulnerabilities, the Union strategy is a 
good choice. Afterwards, we made a comprehensive 
comparison with the baseline, which demonstrated that the 
MSgram with multi-semantics outweighed the baseline in the 
performance of vulnerability detection. The MSgram with 
either the Intersection or the Union strategy not only obtains 
greatly improvements on their focusing measures but also 
keep stability or even excel on other measures. In this case, we
came to the conclusion that the novel concept of analyzing 
smart contracts based on multiple semantics indeed performed 
much better than that based on single semantic in vulnerability 
auditing. 
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